Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ChemSusChem ; : e202301739, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389167

RESUMO

The widespread application of electrochemical hydrogen production faces significant challenges, primarily attributed to the high overpotential of the oxygen evolution reaction (OER) in conventional water electrolysis. To address this issue, an effective strategy involves substituting OER with the value-added oxidation of biomass feedstock, reducing the energy requirements for electrochemical hydrogen production while simultaneously upgrading the biomass. Herein, we introduce an electrocatalytic approach for the value-added oxidation of isobutanol, a high energy density bio-fuel, coupled with hydrogen production. This approach offers a sustainable route to produce the valuable fine chemical isobutyric acid under mild condition. The electrodeposited Ni(OH)2 electrocatalyst exhibits exceptional electrocatalytic activity and durability for the electro-oxidation of isobutanol, achieving an impressive faradaic efficiency of up to 92.4 % for isobutyric acid at 1.45 V vs. RHE. Mechanistic insights reveal that side reactions predominantly stem from the oxidative C-C cleavage of isobutyraldehyde intermediate, forming by-products including formic acid and acetone. Furthermore, we demonstrate the electro-oxidation of isobutanol coupled with hydrogen production in a two-electrode undivided cell, notably reducing the electrolysis voltage by approximately 180 mV at 40 mA cm-2 . Overall, this work represents a significant step towards improving the cost-effectiveness of hydrogen production and advancing the conversion of bio-fuels.

2.
Prep Biochem Biotechnol ; 54(3): 343-357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37531084

RESUMO

Microalgae are regarded as renewable resources of energy, foods and high-valued compounds using a biorefinery approach. In the present study, we explored isolated microalgae (Desmodesmus subspicatus) for the production of bio-energy molecules (carbohydrate and lipid). Optimizations of media (BG-11) components have been made using the Taguchi orthogonal array (TOA) technique to maximize biomass, carbohydrate and lipid production. Optimized results showed that biomass, carbohydrates and lipid productivity increased by 1.3 times at optimal combinations of media components than standard BG-11 media. Further, the influence of various carbon and nitrogen sources as nutritional supplement with optimum media composition under different light intensities was investigated for productivity of carbohydrate and lipid. Results demonstrated that 1.5 times higher productivity of carbohydrate and lipids were achieved in the presence optimum BG-11 under a broad range of light intensities (84-504 µmol m-2 s-1). Among different nitrogen sources, glycine was found to give higher productivity (1.5 times) followed by urea. Use of the cellulose as a carbon source in the media significantly increases biomass (2.4 times), carbohydrates (2.3 times) and lipids (2.3 times) productivity. Investigations revealed that cultivating Desmodesmus subspicatus under optimum culture conditions has the potential for large-scale bio-ethanol and bio-diesel production.


Assuntos
Celulose , Microalgas , Carbono , Suplementos Nutricionais , Hexoses , Nitrogênio , Lipídeos
3.
ACS Biomater Sci Eng ; 9(10): 5700-5708, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37756260

RESUMO

In recent years, extensive scientific efforts have been conducted to develop clean bioenergy technologies. A promising approach that has been under development for more than a hundred years is the microbial fuel cell (MFC) which utilizes exoelectrogenic bacteria as an electron source in a bioelectrochemical cell. The viability of bacteria in soil MFCs can be maintained by integrating plant roots, which release organic materials that feed the bacteria. In this work, we show that rather than organic compounds, roots also release redox species that can produce electricity in a biofuel cell. We first studied the reduction of the electron acceptor Cytochrome C by green onion roots. We integrate green onion roots into a biofuel cell to produce a continuous bias-free electric current for more than 24 h in the dark. This current is enhanced upon irradiation of the onion's leaves with light. We apply cyclic voltammetry and 2D-fluorescence measurements to show that NADH and NADPH act as major electron mediators between the roots and the anode, while their concentrations in the external root matrix are increased upon irradiation of the leaves. Finally, we show that roots can contribute to energy storage by charging a supercapacitor.

4.
Chemosphere ; 295: 133894, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35150698

RESUMO

The torrefaction of lignocellulose biomass was conducted to produce biochar with properties compatible with coal. Two lignocellulose biomasses, pearl millet (PM) and walnut shell (WS), were torrefied at different process temperatures (230-300 °C), residence times (30-90 min), and different compositional biomass blends to improve the characteristics of the biochar product. The resulting biochar product exhibited favorable changes in their properties. The pure biomasses and their blends obtained a high biochar yield (41-91%). The gross calorific value (GCV) ranged from 22 to 27 MJ/kg, showing an increase of 22-59% compared to the raw biomass. The torrefaction temperature had the most notable effect on the biochar quantity and quality. The biochar samples obtained from the torrefaction of different blends showed a higher GCV and other physicochemical characteristics than the pure biomasses. Scanning electron microscopy showed that these products might also be used for other applications.


Assuntos
Juglans , Pennisetum , Biocombustíveis , Biomassa , Carvão Mineral , Temperatura
5.
Bioresour Technol ; 318: 124081, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32927317

RESUMO

Aqueous phase (AP) recirculation is attracting increasing interest in hydrothermal process field as it has the potential to increase the yield of bio-crude and/or hydrochar and decrease the cost of hydrothermal wastewater disposal. This work summarizes the effect of AP recirculation on hydrothermal processing biomass, including the discussions on the mechanisms account for the increased yield and the changing properties of the hydrochar and bio-crude. However, the application of AP recirculation in hydrothermal process is limited by the enrichment of nitrogen in bio-crude and the applicability of only specific biomass type. To alleviate these limitations, the feasibility of combining AP recirculation with other strategies (e.g., co-solvent and co-feed) has been discussed. The possibility of using AP as a resource (e.g., nutrient source, and material mediator) can be increased by AP recirculation due to the accumulation of substances.


Assuntos
Carbono , Água , Biocombustíveis , Biomassa , Nitrogênio , Temperatura
6.
Bioresour Technol ; 311: 123561, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32454420

RESUMO

The aim of this work was to study fast pyrolysis of three microalgae species in a continuous bench-scale conical spouted bed reactor at 500 °C. Bio-gas, bio-oil and bio-char yields have been determined and characterized by using GC, GC/MS, elemental analyzer and SEM. Bio-oil was the main product obtained through pyrolysis of microalgae. The non-condensable gaseous stream is made up of mainly hydrogen, carbon monoxide and carbon dioxide, apart from other light hydrocarbons detected in lower concentration, as are methane, ethane, ethylene, propane and propylene. The compounds identified in the bio-oil have been categorized into hydrocarbons, nitrogen containing compounds, ketones, alcohols, acids, lactones, phenols and aldehydes. The nitrogen and carbon contents of the microalgae bio-chars are higher than those for bio-chars derived from other biomasses. Pyrolysis improved the morphology and porous structure of microalgae. Finally, the mechanism involving microalgae pyrolysis has been approached and the main reaction pathways have been proposed.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Temperatura Alta , Pirólise
7.
Environ Sci Pollut Res Int ; 27(20): 24702-24722, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31487009

RESUMO

This study is focused on artificial neural network (ANN) modelling of non-modified diesel engine keyed up by the combination of two low viscous biofuels to forecast the parameters of emission and performance. The diesel engine is energised with five different test fuels of the combination of citronella and Cymbopogon flexuous biofuel (C50CF50) with diesel at precise blends of B20, B30, B40, B50 and B100 in which these numbers represent the contents of combination of biofuel and the investigation is carried out from zero to full load condition. The experimental result was found that the B20 blend had improved BTE at all load states compared with the remaining biofuel blends. At 100% load state, BTE (31.5%) and fuel consumption (13.01 g/kW-h) for the B20 blend was closer to diesel. However, the B50 blend had minimal HC (0.04 to 0.157 g/kW-h), CO (0.89 to 2.025 g/kW-h) and smoke (7.8 to 60.09%) emission than other test fuels at low and high load states. The CO2 emission was the penalty for complete combustion. The NOx emission was higher for all the biodiesel blends than diesel by 6.12%, 8%, 11.53%, 14.81% and 3.15% for B20, B30, B40, B50 and B100 respectively at 100% load condition. The reference parameters are identified as blend concentration percentage and brake power values. The trained ANN models exhibit a magnificent value of 97% coefficient of determination and the high R values ranging between 0.9076 and 0.9965 and the low MAPE values ranging between 0.98 and 4.26%. The analytical results also provide supportive evidence for the B20 blend which in turn concludes B20 as an effective alternative fuel for diesel.


Assuntos
Biocombustíveis/análise , Gasolina/análise , Redes Neurais de Computação , Fumaça , Emissões de Veículos/análise
8.
Biosens Bioelectron ; 126: 275-291, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445303

RESUMO

In the last few years, there have been an increasing number of reports where different energy harvesters are directly combined with charge storing devices, based on dual-function electrodes able to convert and store electrical energy in the same volume. This includes (bio)fuel cells harvesting chemical energy, (bio)solar cells harvesting solar energy, tribo- and piezoelectric devices harvesting mechanical energy, and thermoelectrics harvesting thermal energy, which now have been intimately combined with batteries and electrochemical capacitors. These new types of hybrid electric devices show great promise especially for the design of self-powered electronics where an integrated hybrid power system is preferable to separated ones, capable of scavenging ambient energy and simultaneously store it and in this way increasing the efficiency and enabling further miniaturization. This paper details the recent emergence of hybrid energy systems, reviewing the progress made using widely different energy harvesting techniques, which have so-far not been described in a single body of work.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Transferência de Energia , Sistemas Microeletromecânicos , Eletricidade , Eletrônica , Desenho de Equipamento , Humanos , Fenômenos Físicos , Energia Solar
9.
Biosens Bioelectron ; 124-125: 253-259, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30391786

RESUMO

Performance of a glucose-driven bio-battery was improved by enhancing electrode characteristics and oxygen supply efficiency to a cathode. The bio-battery generates electric power from glucose through three enzymatic reactions using glucose dehydrogenase, diaphorase and bilirubin oxidase. A flexible and thin Pt electrode was employed instead of a glassy carbon (GC) electrode on which enzymes, a coenzyme, and mediators were immobilized by layer-by-layer method. The maximum current and power densities of the constructed bio-battery were 257 ±â€¯22 µA/cm2 and 86 ±â€¯3 µW/cm2, respectively, in 5 mM glucose solution. In addition, a newly designed compact gas/liquid diaphragm cell, which allowed to reduce the internal resistance by shortening the anode-cathode distance and enhance oxygen supply to a cathode using a highly-porous cotton mesh diaphragm, was implemented to the bio-battery to develop a high-performance Air bio-battery. As a result, improved Air bio-battery showed the maximum current and power densities of 451 ±â€¯27 µA/cm2 and 162 ±â€¯7 µW/cm2, which was 3.6-fold improvement from the previous GC electrode-based bio-battery. In addition, continuous operation for 210 min revealed high stability of power generation as it decreased by 3.3% at the end of operation. Additional supply of oxygen to a cathode exhibited proportional increase of the power density to the oxygen concentration, which demonstrates a promising potential of Air bio-battery for a high-performance and continuous powering device.


Assuntos
Técnicas Biossensoriais , Metabolismo Energético , Glucose/química , Di-Hidrolipoamida Desidrogenase/química , Fontes de Energia Elétrica , Glucose 1-Desidrogenase/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxigênio/química
10.
Sensors (Basel) ; 18(11)2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30423954

RESUMO

This paper investigates online moisture measurement of biofuel employing a strip line cavity resonator at approximately 366 MHz, attached above and below the conveyor belt. An existing sensor design is modified for the factory assembly, and the correct operation has been tested prior to this paper with a small number of measurement points and collected reference samples (n = 67). The purpose is now to concentrate on the accuracy of the measurement and increase the number of measurement points (n = 367). The measurements were made in 5 different lots, and the thickness and moisture properties of the biomaterial mat were varied between minimum and maximum levels by adjusting the settings of the belt filter press that presses pulp slush into a mat. In order to further reduce inaccuracy, at the maximum one standard deviation was allowed from the average height of the equivalent water layer for each dataset, and consequently the number of samples was reduced to 235. A linear fit and a parabola fit were determined for thickness of the equivalent water layer vs. the relative resonant frequency shift: R² = 0.82 and R² = 0.78.


Assuntos
Técnicas Biossensoriais/instrumentação , Micro-Ondas , Água/química , Biocombustíveis , Papel , Pressão
11.
Biotechnol Biofuels ; 11: 139, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29785206

RESUMO

BACKGROUND: Bio-jet fuels are emerging as a valuable alternative to petroleum-based fuels for their potential for reducing greenhouse gas emissions and fossil fuel dependence. In this study, residual woody biomass from slash piles in the U.S. Pacific Northwest is used as a feedstock to produce iso-paraffinic kerosene, through the production of sugar and subsequent patented proprietary fermentation and upgrading. To enhance the economic viability and reduce the environmental impacts of iso-paraffinic kerosene, two co-products, activated carbon and lignosulfonate, are simultaneously produced within the same bio-refinery. A cradle-to-grave life cycle assessment (LCA) is performed for the residual woody biomass-based bio-jet fuel and compared against the cradle-to-grave LCA of petroleum-based jet fuel. This paper also discusses the differences in the environmental impacts of the residual biomass-based bio-jet fuel using two different approaches, mass allocation and system expansion, to partition the impacts between the bio-fuel and the co-products, which are produced in the bio-refinery. RESULTS: The environmental assessment of biomass-based bio-jet fuel reveals an improvement along most critical environmental criteria, as compared to its petroleum-based counterpart. However, the results present significant differences in the environmental impact of biomass-based bio-jet fuel, based on the partitioning method adopted. The mass allocation approach shows a greater improvement along most of the environmental criteria, as compared to the system expansion approach. However, independent of the partitioning approach, the results of this study reveal that more than the EISA mandated 60% reduction in the global warming potential could be achieved by substituting petroleum-based jet fuel with residual woody biomass-based jet fuel. Converting residual woody biomass from slash piles into bio-jet fuel presents the additional benefit of avoiding the impacts of slash pile burning in the forest, which results in a net negative impact on 'Carcinogenics' and 'Respiratory effects', and substantial reduction in the 'Smog' and 'Ecotoxicity' impacts. The production of woody biomass-based bio-jet fuel, however, did not show any significant improvement in the 'Acidification' and 'Eutrophication' impact categories. CONCLUSIONS: The study reveals that residual woody biomass recovered from slash piles represents a more sustainable alternative to petroleum for the production of jet fuel with a lower impact on global warming and local pollution. Future research should focus on the optimization of chemical processes of the bio-refinery to reduce the impacts on the 'Acidification' and 'Eutrophication' impact categories.

12.
Politics Life Sci ; 36(1): 14-26, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28884650

RESUMO

Although much of the social science literature supports the importance of community assets for success in many policy areas, these assets are often overlooked when selecting communities for new infrastructure facilities. Extensive collaboration is crucial for the success of environmental and economic projects, yet it often is not adequately addressed when making siting decisions for new projects. This article develops a social asset framework that includes social, creative, and human capital to inform site-selection decisions. This framework is applied to the Northwest Advanced Renewables Alliance project to assess community suitability for biofuel-related developments. This framework is the first to take all necessary community assets into account, providing insight into successful site selection beyond current models. The framework not only serves as a model for future biorefinery projects but also guides tasks that depend on informed location selection for success.


Assuntos
Biocombustíveis , Meio Ambiente , Comportamento Cooperativo , Humanos , Resolução de Problemas , Alocação de Recursos
13.
Materials (Basel) ; 10(3)2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28772682

RESUMO

The paper deals with the corrosion behavior of stainless steels as candidate materials for biofuel production plants by liquefaction process of the sorted organic fraction of municipal solid waste. Corrosion tests were carried out on AISI 316L and AISI 304L stainless steels at 250 °C in a batch reactor during conversion of raw material to bio-oil (biofuel precursor), by exposing specimens either to water/oil phase or humid gas phase. General corrosion rate was measured by weight loss tests. The susceptibility to stress corrosion cracking was evaluated by means of U-bend specimens and slow stress rate tests at 10-6 or 10-5 s-1 strain rate. After tests, scanning electron microscope analysis was carried out to detect cracks and localized attacks. The results are discussed in relation with exposure conditions. They show very low corrosion rates strictly dependent upon time and temperature. No stress corrosion cracking was observed on U-bend specimens, under constant loading. Small cracks confined in the necking cone of specimens prove that stress corrosion cracking only occurred during slow strain rate tests at stresses exceeding the yield strength.

14.
Front Plant Sci ; 8: 801, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28559912

RESUMO

Drought has become a critical environmental stress affecting on plant in temperate area. As one of the promising bio-energy crops to sustainable biomass production, the genus Miscanthus has been widely studied around the world. However, the most widely used hybrid cultivar among this genus, Miscanthus × giganteus is proved poor drought tolerance compared to some parental species. Here we mainly focused on Miscanthus sinensis, which is one of the progenitors of M. × giganteus providing a comparable yield and well abiotic stress tolerance in some places. The main objectives were to characterize the physiological and photosynthetic respond to drought stress and to develop simple sequence repeats (SSRs) markers associated with drought tolerance by transcriptome sequencing within an originally collection of 44 Miscanthus genotypes from southwest China. Significant phenotypic differences were observed among genotypes, and the average of leaf relative water content (RWC) were severely affected by drought stress decreasing from 88.27 to 43.21%, which could well contribute to separating the drought resistant and drought sensitive genotype of Miscanthus. Furthermore, a total of 16,566 gene-associated SSRs markers were identified based on Illumina RNA sequencing under drought conditions, and 93 of them were randomly selected to validate. In total, 70 (75.3%) SSRs were successfully amplified and the generated loci from 30 polymorphic SSRs were used to estimate the genetic differentiation and population structure. Finally, two optimum subgroups of the population were determined by structure analysis and based on association analysis, seven significant associations were identified including two markers with leaf RWC and five markers with photosynthetic traits. With the rich sequencing resources annotation, such associations would serve an efficient tool for Miscanthus drought response mechanism study and facilitate genetic improvement of drought resistant for this species.

15.
Bioresour Technol ; 238: 616-623, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28486194

RESUMO

Adding catalyst could improve the yields and qualities of bio-gas and bio-oil, and realize the oriented production. Results showed that the catalytic gas-production capacities of CaO were higher than those of Fe2O3, and the bio-gas yield at 800°C reached a maximum of 35.1%. Because the polar cracking active sites of CaO reduced the activation energy of the pyrolysis reaction and resulted in high catalytic cracking efficiencies. In addition, the quality of bio-oil produced by CaO was superior to that by Fe2O3, although the bio-oil yield of CaO was relatively weak. The light bio-fuel oriented catalytic pyrolysis could be realized when adding different catalysts. At 800°C, CaO was 45% higher than Fe2O3 in aspect of H2 production while Fe2O3 was 103% higher than CaO in aspect of CH4 production. Therefore, CaO was more suitable for H2 production and Fe2O3 was more suitable for CH4 production.


Assuntos
Micro-Ondas , Esgotos , Biocombustíveis , Compostos Férricos , Temperatura Alta , Temperatura
16.
Politics Life Sci ; 36(1): 14-26, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29355475

RESUMO

Although much of the social science literature supports the importance of community assets for success in many policy areas, these assets are often overlooked when selecting communities for new infrastructure facilities. Extensive collaboration is crucial for the success of environmental and economic projects, yet it often is not adequately addressed when making siting decisions for new projects. This article develops a social asset framework that includes social, creative, and human capital to inform site-selection decisions. This framework is applied to the Northwest Advanced Renewables Alliance project to assess community suitability for biofuel-related developments. This framework is the first to take all necessary community assets into account, providing insight into successful site selection beyond current models. The framework not only serves as a model for future biorefinery projects but also guides tasks that depend on informed location selection for success.


Assuntos
Biocombustíveis , Participação da Comunidade/métodos , Capital Social , Fortalecimento Institucional/organização & administração , Cultura , Comportamentos Relacionados com a Saúde , Nível de Saúde , Humanos , Modelos Teóricos , Estudos de Casos Organizacionais , Estudos Retrospectivos , Ciências Sociais , Fatores Socioeconômicos
17.
Front Plant Sci ; 7: 802, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375656

RESUMO

As a great potential bio-fuel feedstock, the genus Miscanthus has been widely studied around the world, especially Miscanthus × giganteus owing to its high biomass yield in Europe and North America. However, the narrow genetic basis and sterile characteristics of M. × giganteus have become a limitation for utilization and adaptation to extreme climate conditions. In this study, we focused on one of the progenitors of M. × giganteus, Miscanthus sinensis, which was originally distributed in East Asia with abundant genetic resources and comparable biomass yield potential to M. × giganteus in some areas. A collection of 138 individuals was selected for conducting a 3-year trial of biomass production and analyzed by using 104 pairs of SRAP, ISAP, and SSR primers for genetic diversity as well as marker-trait association. Significant differences in biomass yield and related traits were observed among individuals. Tiller number, fresh biomass yield per plant and dry biomass yield per plant had a high level of phenotypic variation among individuals and the coefficient of variation were all above 40% in 2011, 2012, and 2013. The majority of the traits had a significant correlation with the biomass yield except for the length and width of flag leaves. Plant height was a highly stable trait correlated with biomass yield. A total of 1059 discernible loci were detected by markers across individuals. The population structure (Q) and cluster analyses identified three subpopulations in the collection and family relative kinship (K) represented high gene flow among M. sinensis populations from Southwest China. Model testing identified that Q+K was the best model for describing the associations between the markers and traits, compared to the simple linear, Q or K model. Using the Q+K model, 12 significant associations (P < 0.001) were identified including four markers with plant height and one with biomass yield. Such associations would serve an efficient tool for an early selection of M. sinensis and facilitate a genetic improvement of biomass yield for this species.

18.
3 Biotech ; 5(3): 253-260, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28324290

RESUMO

The increasing requirement of food neutral biofuels demands the detection of alternative sources. The use of non-arable land and waste water streams is widely discussed in this regard. A Cyanobacterium was isolated on the area of a possible algae production side near a water treatment plant in the arid desert region al-Wusta. It was identified as Cyanobacterium aponinum PB1 and is a possible lipid source. To determine its suitability of a production process using this organism, a set of laboratory experiments were performed. Its growth behavior was examined in regard to high temperatures and increasing NaCl concentrations. A productivity of 0.1 g L-1 per day was measured at an alga density below 0.75 g L-1. C. aponinum PB1 showed no sign of altered growth behavior in media containing 70 g L-1 NaCl or less. Detection of a negative effect of NaCl on the growth using Pulse-Amplitude-Modulation chlorophyll fluorescence analysis was not more sensitive than optical density measurement.

19.
Biosci. j. (Online) ; 30(6): 1933-1941, nov./dec. 2014. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-948541

RESUMO

Jatropha curcas (Euphorbiaceae) is an evergreen tree traditionally used in popular medicine, and also as a promising source for bio-fuel production. The in vitro propagation of this species has been studied as an alternative to conventional methods such as cutting and seedling. In vitro culture environment consists on closed flasks, with high relative humidity, reduced gas exchanges and artificial temperature and luminosity conditions. These conditions may induce physiological and anatomical alterations in cultivated plants. The occurrence of anatomical alterations on the leaves of J. curcas was examined in plants cultivated both in vitro and ex vitro, under greenhouse conditions. The stomatal index was higher on the leaves from greenhouse plants. Mesophyll thickness did not differ, but the greenhouse leaves presented an additional palisade layer, which reflects the environmental influence on cell division. The cells of the chlorophyllous parenchyma of young plants grown in greenhouse conditions have larger chloroplasts than those of the plants grown in vitro. The chloroplasts of mature leaves are similar in height, but the mitochondria are smaller. Current results indicate that the leaves of J. curcas respond distinctly to both environments. It is necessary to adjust the abiotic conditions in vitro to avoid precocious senescence, diagnosed by chloroplasts and mesophyll degradation.


Jatropha curcas (Euphorbiaceae) é uma espécie arbórea sempre-verde usada tradicionalmente na medicina popular e com potencial para produção de biodiesel. A propagação in vitro desta espécie tem sido avaliada como alternativa aos meios convencionais de estaquia e plantio. O ambiente in vitro consiste em frascos de vidro fechados, com umidade relativa elevada, trocas gasosas reduzidas, e condições artificialmente controladas de temperatura e luminosidade. Tais condições podem induzir anormalidades fisiológicas e anatômicas nas plantas cultivadas. A ocorrência de alterações anatômicas foi avaliada em folhas de J. curcas cultivadas in vitro e em casa de vegetação visando diagnosticar os efeitos do ambiente in vitro sobre o desenvolvimento das plantas. O índice estomático foi maior nas folhas de plantas crescidas em casa de vegetação. A espessura do mesofilo não apresentou alterações, mas as folhas das plantas crescidas em casa de vegetação apresentaram uma camada adicional de parênquima paliçádico. Citologicamente, as células do parênquima clorofiliano de plantas jovens crescidas em casa de vegetação possuem cloroplastos maiores do que aqueles das plantas crescidas in vitro. Nas plantas maduras, os cloroplastos apresentam tamanhos similares. As mitocôndrias possuem tamanhos reduzidos nas plantas maduras ex vitro. Nossos resultados mostram que as folhas de J. curcas respondem distintamente aos dois ambientes. Ajustes nas condições abióticas in vitro são necessários para evitar a senescência precoce, diagnosticada pela desintegração dos cloroplastos e consequentemente do mesofilo. Current results indicate that the leaves of J. curcas respond distinctly to both environments. It is necessary to adjust the abiotic conditions in vitro to avoid precocious senescence, diagnosed by chloroplasts and consequent mesophyll degradation.


Assuntos
Técnicas In Vitro , Euphorbiaceae , Jatropha , Biocombustíveis
20.
Bioresour Technol ; 169: 134-142, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25043346

RESUMO

An effective way for restaurant grease trap waste (GTW) treatment to generate fuel oil and methane by the combination of physiological and biological processes was investigated. The heat-driven extraction could provide a high purity oil equivalent to an A-grade fuel oil of Japanese industrial standard with 81-93 wt% of extraction efficiency. A post-extracted residue was treated as an anaerobic digestion feedstock, and however, an inhibitory effect of long chain fatty acid (LCFA) was still a barrier for high-rate digestion. From the semi-continuous experiment fed with the residual sludge as a single substrate, it can be concluded that the continuous addition of calcium into the reactor contributed to reducing LCFA inhibition, resulting in the long-term stable operation over one year. Furthermore, the anaerobic reactor performed well with 70-80% of COD reduction and methane productivity under an organic loading rate up to 5.3g-COD/L/d.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Óleos Combustíveis , Metano/biossíntese , Restaurantes , Resíduos , Anaerobiose , Técnicas de Cultura Celular por Lotes , Ácidos Graxos Voláteis/análise , Gases/análise , Temperatura Alta , Esgotos/química , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...